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 Abstract - The cooperative trapping of multiple amphibious 

robots in a 3D underwater environment is a comprehensive 

research topic that mainly includes the generation of dynamic 

alliances for trapping and path planning. To address this problem, 

this paper first proposes a "trap point occupancy strategy" to 

realize the generation of dynamic alliances among multiple robots 

during the trapping process. Secondly, based on this, an improved 

gray wolf algorithm is proposed in this paper to implement robot 

target guidance and adaptive obstacle avoidance functions, used 

for the path planning of the robot's arrival at the trapping point 

during the trapping process, thus completing the entire trapping 

task. Then, this paper conducts simulation experiments in a 3D 

underwater environment with static obstacles, and the results 

confirm that the proposed cooperative trapping algorithm has 

high efficiency and robustness. Finally, the innovations and all the 

work in the article are summarized, and prospects are put 

forward. 

 
Index Terms - Keywords: Amphibious spherical robot, multi-

robot collaborative encirclement, encirclement point occupation 

algorithm, improved gray wolf algorithm 

 

I.  INTRODUCTION 

 With the development of technology and the 

advancement of productivity levels, the global population is 

growing rapidly, which also leads to further depletion of land 

resources. In recent years, people have begun to turn their 

attention to the ocean, and autonomous underwater vehicles 

(AUVs) as intelligent robots that can autonomously 

complete underwater operations without real-time operation 

have been widely used in the exploration and development 

of marine resources [1-5]. Currently, research on single AUV 

systems at home and abroad is relatively mature. However, 

in complex 3D underwater environments, a single robot is 

difficult to complete the complex tasks assigned to it, so 

multi-AUV systems are widely researched. The advantage 

of the multi-AUV system is that it does not rely on the high 

performance of a single robot in the system, and the failure 

of a single robot will not affect the operation of the entire 

system, which greatly reduces the risk of task failure. 

In the widespread application of multi-AUV systems, 

collaborative encirclement technology has attracted 

extensive attention from researchers in the field of robotics. 

The implementation of a complete encirclement task 

includes two main aspects [6-7]: (1) the allocation of the 

encirclement point location, that is, planning encirclement 

points that can successfully encircle the evading AUV, and 

assigning these encirclement points to the encircling AUVs 

in an optimal way to minimize the total path distance to 

reach the encirclement point. (2) Robot path planning, in 

order to enable each AUV to reach the assigned encirclement 

point along the shortest path while successfully avoiding 

obstacles, it is necessary to plan the traveling path. 

In response to the encirclement problem with multiple 

AUVs, there are currently various strategies available. Chen 

and NI [1,8] applied the bio-inspired neural network (BNN) 

algorithm to multi-robot encirclement problems. Although 

their proposed method can effectively find the optimal path, 

the communication and computational costs are relatively 

high, making it unsuitable for small underwater robots. 
 

 
Fig. 1 Neural network model: a. 3D connected neural network [1]; b. Neural 

network model for the hunting task [8] 

 

Researchers at Shandong University, led by YU, have 

improved the RTT* algorithm and proposed a Cyl-HRRT* 

algorithm [9]. By biasing the sampling and expansion 

towards a subset of cylindrical states, this algorithm 

improves current solutions and provides better paths for 

Autonomous Underwater Vehicles (AUVs). Although this 

path planning method has been proven to have good obstacle 

avoidance effects in different obstacle environments, the 

Cyl-HRRT* algorithm requires complex branch-and-bound 

search. Considering the mechanical structure and kinematics 

constraints of small spherical robots, using the Cyl-HRRT* 

algorithm will instead increase the algorithm complexity, 



leading to decreased computational efficiency. Chen [10] 

proposed a capture strategy based on Bug2 and angle-first, 

which guides the encircling AUV to the target location by 

directing it to move in a straight line towards the target 

location or along the edge of obstacles. Although this 

method is simple and easy to implement, it only plans for 

straight-line and along-the-edge movements, and does not 

necessarily obtain the shortest and optimal path to reach the 

target location.  
 

 
Fig. 2 Using the Cyl-HRRT* to perform subset contraction during search [9] 

 

To address this problem, Yin and Cao [11-12] proposed 

a multi-AUV cooperative target search strategy based on 

improved potential fields. However, their experimental 

results only confirmed the effectiveness of this method in a 

two-dimensional environment, and its applicability in a 

three-dimensional environment needs further research and 

verification. 

 
Fig. 3 Artificial potential field planning: a. The generation mechanism of 
resultant force based on artificial potential field [11]; b-c. Simulation of 

hunting process with two targets [12] 

 

To address the problems identified in the literature 

above, this paper proposes a target point allocation strategy 

based on "capture point occupancy" [1] and an improved 

wolf pack algorithm for path planning, in order to efficiently 

encircle and capture escaping AUVs in a three-dimensional 

environment. The results prove that the strategy requires 

fewer capture AUVs, has lower computational costs, and 

generates shorter trajectory paths, making it highly 

applicable in a three-dimensional environment. 

The algorithm advancements and breakthroughs in this 

article can be summed up as follows: First, in order to 

successfully prevent the issue of robots duplicating 

encirclement locations, we assigned the positions of the 

encirclement points prior to conducting the encirclement; 

Second, to better determine the fitness value of each position, 

we improved the heuristic function of the conventional wolf 

pack algorithm and used more appropriate evaluation criteria. 

We also carefully considered the Euclidean distance between 

the robot position, obstacles, and the target point. Then, we 

introduced the size information of the robot, and when 

judging whether a collision occurs, we no longer simply 

consider the collision between the path and the obstacles, but 

also whether the edges of the spherical robot will collide, 

making the algorithm more suitable for practical problems; 

Finally, we introduced an adaptive parameter control 

strategy, which improves the robustness and adaptability of 

the algorithm. 

The structure of the remaining parts of this paper is as 

follows: Section 2 describes the problem addressed in this 

paper. Section 3 introduces the algorithm principles and 

implementation process of the proposed collaborative 

trapping strategy. In order to evaluate the performance of the 

proposed algorithm, Section 4 conducts simulation 

experiments and provides experimental results. Section 5 

summarizes and outlooks the work of the entire paper, and 

points out the innovations of this paper. 

II. PROBLEM DESCRIPTION 

 The cooperative encirclement problem in multi-robot 

systems refers to the task of assigning one or more robots to 

capture one or more moving targets, and how to plan the 

robot's path to maximize the success rate of the encirclement. 

In underwater environments, multi-robot encirclement 

problems have higher complexity because robot movement 

and communication are influenced by environmental factors 

such as water flow and obstacles, while target movement is 

also more complex. Therefore, before analyzing the problem, 

it is necessary to construct an equivalent simulation 

environment in underwater terrain. 

 The most common method for modeling threats and 

obstacles in complex underwater environments is to 

represent them as mountainous terrain [13]. Figure 4 shows 

a schematic diagram of randomly generated mountain-

shaped terrain used to simulate underwater terrain, and the 

actual environment has been proportionally reduced. 

Subsequent problem-solving is based on this environment. 
 

 
Fig. 4 Three-dimensional underwater environment simulation diagram 



Consider a multi-robot system consisting of 𝑁 

encircling robots and one target robot, the position and 

velocity of the 𝑖 − 𝑡ℎ robot at time 𝑡 can be represented as: 
 

        𝑃𝑖(𝑡) =  [𝑥𝑖(𝑡),  𝑦𝑖(𝑡), 𝑧𝑖(𝑡)] ∈  𝑅3       (1) 

𝑣𝑖(𝑡) =  [𝑢𝑖(𝑡),  𝑤𝑖(𝑡), 𝑟𝑖(𝑡)]         (2) 
 

Among them, 𝑥𝑖(𝑡) , 𝑦𝑖(𝑡) , 𝑧𝑖(𝑡) represents the 

component size of robot 𝑖  at time 𝑡  along the x-axis, y-

axis, and z-axis directions, 𝑢𝑖(𝑡),  𝑤𝑖(𝑡), 𝑟𝑖(𝑡) represents 

the component size of the velocity. 

The position and velocity of the target robot at time t 

can be represented as: 
 

𝑃𝑎(𝑡) =  [𝑥𝑎(𝑡),  𝑦𝑎(𝑡), 𝑧𝑎(𝑡)] ∈  𝑅3       (3) 

           𝑣𝑎(𝑡) =  [𝑢𝑎(𝑡),  𝑤𝑎(𝑡), 𝑟𝑎(𝑡)]        (4) 
 

Among them, 𝑥𝑖(𝑡) , 𝑦𝑖(𝑡) , 𝑧𝑖(𝑡) represents the 

component size of target 𝑖  at time 𝑡  along the x-axis, y-

axis, and z-axis directions, 𝑢𝑖(𝑡),  𝑤𝑖(𝑡), 𝑟𝑖(𝑡) represents 

the component size of the velocity. 

Therefore, the distance vector between the 𝑖 − 𝑡ℎ 

robot and the target robot can be represented as 𝑅𝑎𝑖(𝑡) =
|𝑃𝑖(𝑡) − 𝑃𝑎(𝑡)| . In the three-dimensional collaborative 

encirclement problem, there must be at least six defenders to 

form the most basic "encirclement formation" [6-7], where 

defenders can also be obstacles. 

The judgment condition for a successful capture is that 

the encircling robots are uniformly distributed in the six 

directions of front, back, left, right, up, and down at a 

distance of r from the target robot through diving and 

surfacing operations, while surrounding the target at its 

geometric center. Figure 5 shows a schematic diagram of a 

successful capture. This successful capture condition can be 

expressed by the following equation: 
 

              𝑃𝑎(𝑡) =  
1

𝑁
∑ 𝑃𝑖(𝑡)𝑁

𝑖=1              (5) 

𝑅𝑎𝑖(𝑡) = |𝑃𝑖(𝑡) − 𝑃𝑎(𝑡)| ≤ 𝑟         (6) 
 

Where r is the encirclement radius. Therefore, the key 

to the multi-robot encirclement problem lies in how to plan 

the paths of the robots so that they can approach the target as 

quickly as possible and avoid conflicts between robots. 
 

 
Fig. 5 Illustration of successful trapping in a 3D environment  

III.  SOLUTION 

 In this section, a collaborative encirclement strategy is 

proposed for a multi-water-land amphibious spherical robot 

system, to achieve efficient target encirclement by the 

amphibious spherical robots in a three-dimensional 

underwater static obstacle environment. 
 

A. Dynamic alliance generation based on "encirclement 
point occupancy" 

 This paper proposes a dynamic "encirclement point 

occupancy" algorithm, which is used to assign encirclement 

points to capture AUVs when capturing an escaping target, 

in order to maximize the encirclement and control of the 

target. The implementation principle of the algorithm is 

based on the shortest total travel time of the encircling AUVs.  

Figure 6 shows the implementation process of the 

"encirclement point occupancy" algorithm. This algorithm 

ensures that each AUV is assigned to the best encirclement 

point and solves the problem of duplicate assignment from 

the root cause through the one-to-one correspondence 

between AUVs and encirclement points. 
 

 
Fig. 6 Flowchart of encirclement point allocation strategy algorithm 

 

B. Path planning based on improved wolf pack algorithm 
The Improved Wolf Pack Algorithm (IWPA) is an 

optimization algorithm based on the behavior of wolves in 

nature. It solves optimization problems by simulating the 

hunting behavior of wolf packs. In this paper, we propose 

using the IWPA algorithm to solve the path planning 

problem of spherical underwater robots by introducing 

hunting, dispersal, and migration behaviors from the hunting 



process of wolf packs. Hunting behavior refers to the 

behavior of wolves searching for prey within their territory, 

dispersal behavior refers to the behavior of wolves randomly 

wandering, and migration behavior refers to the behavior of 

wolves moving to other areas to avoid local optima. There 

are many related introductions on the behavior of wolf pack 

hunting [13-16], and this paper will not repeat them. Below 

we will focus on introducing our innovation points. 

The objective function of IWPA is the shortest path 

length for the underwater robot to reach the trapping point 

and avoid obstacles. Therefore, this paper introduces an 

improved heuristic function in the search part of the IWPA 

algorithm to effectively improve the search efficiency of the 

algorithm and optimize the planned path. The designed 

heuristic function is as follows: 
 

ℎ
𝑖,𝑗

=   𝑤1 ∗ 𝑑𝑖𝑠𝑡(𝑖, 𝑗) +  𝑤2 ∗ min (𝑑𝑖𝑠𝑡(𝑖, 𝑜))   （7） 

 

This function considers both the distance between the 

current position and the target point and the distance 

between obstacles comprehensively. Here, 𝑖 and 𝑗 

represent the coordinates of the current state and the target 

point, 𝑜  represents the set of all obstacles, 𝑑𝑖𝑠𝑡(𝑖, 𝑗) 

represents the Euclidean distance between 𝑖 and 𝑗 , and 

min (𝑑𝑖𝑠𝑡(𝑖, 𝑜)) represents the distance between 𝑖 and the 

nearest obstacle, 𝑤1  and 𝑤2  are distance weighting 

parameters. 

The implementation process of this algorithm is shown 

in Figure 7. By executing the algorithm process, the optimal 

path for trapping AUV to the assigned trapping point can be 

realized. This path can avoid obstacles, has the shortest 

length, and takes less time. 
 

 
Fig. 7 Flowchart for implementing the wolf pack algorithm for path planning 

 

IV.  SIMULATION AND RESULTS 

A. Building the environment model 

 In this paper, the terrain mapping method is used to 

model the 3D underwater environment, where six custom 

peaks are used to simulate underwater obstacles. The center 

point, area, and height of the peaks can be manually set. The 

size of the underwater environment is 200*200*200 𝑐𝑚3. 

In order to make the simulation effect closer to the 

actual situation, this paper proportionally reduces the size of 

the spherical robot to 5𝑐𝑚 . When performing obstacle 

collision detection, the volume of the robot is fully 

considered rather than simply ignoring the volume as a point. 

Figure 8 shows the effect of the built environment model. 
 

 
Fig. 8 Schematic diagram of the environment model 

 

B. Trap point allocation based on the "trap point 

occupancy" algorithm 

We let the program randomly generate the coordinates 

of six trap robots, and set the coordinate of the target point 

(i.e., the initial position of the escaping robot) to (50, 50, 80). 

According to the implementation principle of the trap point 

occupancy algorithm described in Part II, the six positions 

around the escaping robot are assigned to the six trap robots, 

while ensuring the shortest total path. Figure 9 shows the 

effect of the trap point occupancy algorithm's position 

assignment. 
 

 
Fig. 9 The effect of the trap point occupancy algorithm's position allocation 

 

As shown in the figure, the circles represent the 

positions of the trap robots, and the red pentagram in the 

middle represents the position of the escaping robot. The six 

positions around the escaping robot, including front, back, 



left, right, up, and down, are the trap points that are at a 

distance of radius from the target point. In this article, the 

trapping radius is set to 20𝑐𝑚. 
 

C. Path planning situation based on "improved wolf pack 
algorithm"  

Firstly, we take one robot and one target location as an 

example to verify the path planning effectiveness of the 

"improved wolf pack algorithm" proposed in this paper. 
 

 
Fig. 10 The path planning effect of the improved wolf pack algorithm 

 

Figures (a) - (f) show the iterations of the algorithm 

after 1, 5, 10, 15, 20, and 25 iterations, respectively. It can 

be seen that as the number of iterations increases, the path 

becomes shorter and shorter. After twenty iterations, the path 

change is very small, and it can be considered that the 

shortest path has been basically obtained and tends to be 

optimal. In addition, this article designs an obstacle (i.e. a 

mountain peak) on the straight line connecting the starting 

point and the target point. From the above results, it is 

evident that the algorithm perfectly avoids obstacles at every 

step of the path. 
 

D. Performance assessment of the algorithm 

In order to evaluate the performance of the algorithm, 

we compared the improved wolf pack algorithm proposed in 

this article with the traditional Wolf Pack Algorithm (WPA) 

[17,18] and two classic swarm intelligence algorithms, 

Particle Swarm Optimization (PSO) [19,20] and Ant Colony 

Optimization (ACO) [19,21]. The maximum iteration times 

for the algorithm were set to 100 times (at which the optimal 

path could be reached), and the starting point, ending point, 

and obstacle positions of the paths were consistent. 

To make the comparison results more clear, we 

conducted a quantitative analysis of the path planning 

performance from two aspects: path length and algorithm 

running time. Table 1 shows the comparative results of the 

three algorithms. 
 

TABLE I 

COMPARISON OF IMPROVED WOLF PACK ALGORITHM WITH OTHER  

SWARM INTELLIGENCE ALGORITHMS 

Algorithm IWPA WPA PSO ACO 

Path length (cm) 102.33 142.42 102.72 155.44 

Execution time 

(times / s) 
0.63 0.54 0.82 1.14 

 

From the data in Table 1, it can be seen that the length 

of the UAV's trajectory planned by WPA, PSO, and ACO 

algorithms are 142.42 cm, 102.72 cm, and 155.44 cm 

respectively, while the length of the UAV's trajectory 

planned by the IWPA algorithm is 102.33 cm. Thus, WPA 

and ACO algorithms got stuck in local optimal trajectories 

during the search process. Although there is not a notable 

difference between the travel path length planned by the 

IWPA algorithm and the PSO algorithm, the IWPA algorithm 

has a relatively shorter average running time. 

The comparative results show that the proposed IWPA 

algorithm in this article has superior performance and can 

effectively solve the path planning problem of small 

spherical robots in three-dimensional underwater 

environments. 
 

E. Overall trapping situation 

The execution result of the "trap point occupation 

algorithm", i.e., the allocation of AUV and trap points, is 

input as initial information to the path planning module. An 

improved wolf pack algorithm is used to plan the movement 

path of the AUV for trapping based on this information, and 

the entire three-dimensional underwater environment 

trapping process is realized. The following is a schematic 

diagram of the final trapping situation. 
 

 

 
(c) top view 

Fig.11 Trapping situation 



As can be seen from robot R1 in Figure (a) and robot 

R6 in Figure (b), when there is an obstacle on the line 

connecting the starting point and the target point, the path 

planned by the algorithm will bend to avoid the obstacle, 

ensuring good obstacle avoidance effect. It can be seen from 

robots R4, R5 in Figure (a) and robot R3 in Figure (b) that 

when there is no obstacle on the line connecting the starting 

point and the target point, the path planned by the algorithm 

is close to a straight line, ensuring optimal path planning in 

an obstacle-free environment. 

From this top view, it can be seen that the designed path 

takes into account the size information of the robot when 

avoiding obstacles, and the edges of the spherical robot will 

not touch the obstacles during the path planning process. 

IV.  CONCLUSION 

The underwater robot encirclement system requires 

mutual cooperation between multiple robots to achieve a 

successful encirclement. In this article, the "encirclement 

point occupancy" algorithm is designed for small robot 

sensor limitations and the complexity of the three-

dimensional underwater environment. This algorithm 

allocates the six encirclement points around the escaping 

robot to different encircling robots, and is able to minimize 

the total travel distance. Based on the allocated encirclement 

points, we improved the wolf pack algorithm to plan the path 

for the robots to reach the encirclement positions. The 

theoretical analysis and simulation experiments prove that 

our proposed algorithm can achieve a good encirclement 

effect on the escaping AUV, and has good performance. 

Based on the above analysis, our proposed solution can 

efficiently achieve the robot encirclement task in a three-

dimensional underwater static obstacle environment. In 

future work, we will continue to improve the algorithm to 

achieve the encirclement task in a dynamic obstacle 

environment. 
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